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Fluctuations in a Thermal Field and Dissipation of
a Black Hole Spacetime: Far-Field Limit

Antonio Campos1 and B. L. Hu2
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We study the backreaction of a thermal field in a weak gravitational background
depicting the far-field limit of a black hole enclosed in a box by the closed time
path (CTP) effective action and the influence functional method. We derive the
noise and dissipation kernels of this system in terms of quantities in
quasiequilibrium , and formally prove the existence of a fluctuation-dissipation
relation (FDR) at all temperatures between the quantum fluctuations of the thermal
radiance and the dissipation of the gravitational field. This dynamical self-
consistent interplay between the quantum field and the classical spacetime is, we
believe, the correct way to treat backreaction problems. To emphasize this point
we derive an Einstein±Langevin equation which describes the nonequilibrium
dynamics of the gravitational perturbations under the influence of the thermal
field. We show the connection between our method and the linear response theory
(LRT), and indicate how the functional method can provide more accurate results
than prior derivations of FDRs via LRT in the test-field, static conditions. This
method is in principle useful for treating fully nonequilibrium cases such as
backreaction in black hole collapse.

1. INTRODUCTION

In a recent essay [1] one of us outlined the program of black hole

fluctuations and backreaction we are pursuing using stochastic semiclassical

gravity [2] theory based on the Schwinger±Keldysh effective action [3] and
the Feynman±Vernon influence functional [4] methods. We mentioned prior

works for static, quasistatic, and dynamic black hole spacetimes and com-

mented on how to improve on their shortcomings. In this paper, following

the cues suggested in that essay, we discuss first the static case of a Schwarz-

schild black hole, with a further simplification of taking the far-field limit, and
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derive the fluctuation-dissipation relation (FDR) [5] under these conditions. In

our view (following Sciama’ s [6] hints) the FDR embodies the backreaction

of Hawking radiance [7]. In a recent work [8] we treated a relativistic thermal
plasma in a weak gravitational field. Since the far-field limit of a Schwarz-

schild metric is just the perturbed Minkowski spacetime, the results there are

useful for our present problem. The more complicated case of near-horizon

limit is also doable by calculating the fluctuations of the energy-momentum

tensor for the quantum field (with the help of, e.g., the Page approximation

[9]). Derivation of the dissipation and noise kernels for a static black hole
in a cavity is currently under investigation [10, 11].

1.1. Fluctuation and Backreaction in Static Black Holes

We recapitulate what was said before [1] on the state of the art for

problems in this case. Backreaction in this context usually refers to seeking

a consistent solution of the semiclassical Einstein equation for the geometry

of a black hole in equilibrium with its Hawking radiation (enclosed in a box

to ensure relative stability). Much effort in the last 15 years has been devoted
to finding a regularized energy-momentum for the backreaction calculation.

(See refs. 12 and 13 for recent status and earlier references.) Some important

early work on backreaction was carried out by Bardeen and by Hajicek and

Israel [14] and York [15], and more recently by Massar and by Parentani

and Piran [16] along similar lines.

Since the quantum field in such problems is assumed to be in a Hartle±
Hawking state, concepts and techniques from thermal field theory are useful.

Hartle and Hawking [17] and Gibbons and Perry [18] used the periodicity

condition of the Green function on the Euclidean section to give a simple

derivation of the Hawking temperature for a Schwarzschild black hole. The

most relevant work to our present problem is that by Mottola [19], who
showed that in some generalized Hartle±Hawking states a FDR exists between

the expectation values of the commutator and anticommutator of the energy-

momentum tensor. This FDR has a form familiar in linear response theory

[20]:

Nabcd(x, x8) 5 #
`

2 `

d v
2 p

e 2 i v (t 2 t8) coth 1 1

2
b v 2 DÄ abcd(x, x8; v ) (1)

where N and D are the anticommutator and commutator functions of the
energy-momentum tensor, respectively (DÄ is the temporal Fourier transform

of D). That is,

Nabcd(x, x8) 5 ^ {TÃab(x), TÃcd(x8)} & b

Dabcd(x, x8) 5 ^ [TÃab(x), TÃcd(x8)] & b (2)
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He also identifies the two-point function D as a dissipation kernel by

relating it to the time rate of change of the energy density when the

metric is slightly perturbed. Thus, Eq. (1) represents a bona fide FDR

relating the fluctuations of a certain quantity (say, energy density) to the

time rate of change of the very same quantity.

However, this type of FDR has rather restricted significance as it is

based on the assumption of a specific background spacetime (static in

this case) and state (thermal) of the matter field(s). It is not adequate for

the description of backreaction where the spacetime and the state of matter

are determined in a self-consistent manner by their dynamics and mutual

influence. We should therefore look for a FDR for a parametric family

of metrics (belonging to a general class) and a more general state of the

quantum matter (in particular, for Boulware and Unruh states). We expect

the derivation of such a FDR will be more complicated than the simple

case above where the Green functions are periodic in imaginary time

throughout (not just as an initial condition), and where one can simply

take the results of linear response theory in thermal equilibrium (for all

times) almost verbatim.

Even in this simple case, it is worthwhile to note that there is a

small departure from standard linear response theory for quantum systems.

This arises from the observation that the dissipation kernel in usual linear

response analyses is given by a two-point commutator function of the

underlying quantum field, which is independent of the quantum state for

free field theory. In this case, we are still restricted to free fields in a

curved background. However, since the dissipation now depends on a

two-point function of the stress tensor, it is a four-point function of the

field, with appropriate derivatives and coincidence limits. This function

is, in general, state dependent. We have seen examples from related

cosmological backreaction problems [2] where it is possible to explicitly

relate the dissipation to particle creation in the field, which is definitely

a state-dependent process. For the black-hole case, this would imply a

quantum-state-dependent damping of semiclassical perturbations. To obtain

a causal FDR for states more general than the Hartle±Hawking state, one

needs to use the in-in (or Schwinger±Keldysh) formalism applied to a

class of quasistatic metrics (generalization of York [15]) and calculate the

fluctuations of the energy-momentum tensor for the noise kernel. In our

problem such a calculation with backreaction is carried out in full detail,

albeit only for a weak gravitational field here which depicts the far-field

limit of a Schwarzschild black hole spacetimes. We wish to address the

thermal field aspects of the problem, while saving the geometric aspects

in the near-horizon case for a later investigation.
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1.2. Thermal Fields in Linear Gravity

The behavior of a relativistic quantum field at finite temperature in a
weak gravitational field has been studied by Gross et al. [21], Rebhan and

coworkers [22], and Brandt and coworkers [23] for scalar and Abelian gauge

fields. In these works, the thermal graviton polarization tensor and the effec-

tive action have been calculated and applied to the study of the stability of

hot flat/curved spaces and ª dynamicsº of cosmological perturbations. To

describe screening effects and the stability of thermal quantum gravity, one
needs only the real part of the polarization tensor, but for damping effects,

the imaginary part is essential. The gravitational polarization tensor obtained

from the thermal graviton self-energy represents only a part (the thermal

correction to the vacuum polarization) of the finite-temperature quantum

stress tensor. There are in general also contributions from particle creation

(from vacuum fluctuations at zero and finite temperatures). These processes
engender dissipation in the dynamics of the gravitational field and their

fluctuations appear as noise in the thermal field. We aim at finding a relation,

the FDR, between these two processes, which embodies the backreaction

self-consistently.

In this work we use open system concepts and functional methods aÁ la
Schwinger±Keldysh [3] and Feynman±Vernon [4]. By casting the effective

action in the form of an influence functional we derive the noise and dissipa-

tion kernels explicitly and prove that they satisfy a fluctuation-dissipation

relation (FDR) [5] at all temperatures. We also derive a stochastic semiclassi-

cal equation for the nonequilibrium dynamics of the gravitational field under

the influence of the thermal radiance.
We adopt the Hartle±Hawking picture where the black hole is bathed

eternallyÐ actually in quasithermal equilibriumÐ in the Hawking radiance

it emits. It will be described here by a massless scalar quantum field at the

Hawking temperature. As is well known this quasiequilibrium condition is

possible only if the black hole is enclosed in a box of size slightly larger

than the event horizon [15] (or embedded in an anti-de Sitter space [24]). In
the asymptotic limit, the gravitational field is described by a linear perturbation

from Minkowski spacetime. In equilibrium the thermal bath can be character-

ized by a relativistic fluid with a four-velocity (timelike normalized vector

field) u m and temperature in its own rest frame b 2 1. Taking into account the

four-velocity u m of the fluid, a manifestly Lorentz-covariant approach to

thermal field theory may be used [25]. However, in order to simplify the
involved tensorial structure we work in the comoving coordinate system of

the fluid where u m 5 (1, 0, 0, 0).

By making conformal transformations on the field and the spacetime,

our results may be easily generalized to the case of a conformally coupled
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quantum scalar field at finite temperature in a spatially flat Friedmann±

Robertson±Walker universe [26]. Indeed we earlier used the functional

method and the Brownian motion paradigm [4] to study similar problems
in semiclassical gravity [27]. We found that quantum noise arising from

fluctuations in the particle creation would constitute a stochastic source

(whose effect can overdominate the expectation value of the energy-

momentum tensor in the semiclassical Einstein equation [28]) in a new form

of Einstein±Langevin equation [2]. We also came to the understanding that

backreaction of vacuum quantum field processes (such as particle creation)
on the dynamics of the early universe near the Planck time is summarily a

manifestation of a FDR in semiclassical gravity.

In Section 2 we describe our model and the derivation of the thermal

CTP effective action. We compare it with the influence action [4] and identify

the dissipation and the noise kernels representing the linear response of the

gravitational field and the quantum fluctuations of the thermal radiance,
respectively. In Section 3 we show that they obey a fluctuation-dissipation

relation at all temperatures. In Section 4 we show how to derive a stochastic

semiclassical equation for the gravitational perturbations from this effective

action, which depicts the nonequilibrium dynamics of the gravitational field

in a thermal radiation bath.

2. CTP EFFECTIVE ACTION AT FINITE TEMPERATURE

2.1. The Model

In this section, we derive the CTP effective action for a thermal quantum

field in a classical gravitational background. To describe the radiation we

consider a free massless scalar field f arbitrarily coupled to a gravitational

field g m n with classical action

Sm[ f , g m n ] 5 2
1

2 # d nx ! 2 g [g m n - m f - n f 1 j R f 2] (3)

where R(x) is the scalar curvature and the arbitrary parameter j (n) defines

the type of coupling between the scalar field and the gravitational field. If
j 5 (n 2 2)/[4(n 2 1)], where n is the spacetime dimensions, the field is

said to be conformally coupled; if j 5 0, the quantum field is said to be

minimally coupled. In the weak-field limit we consider a small perturbation

h m n from flat spacetime h m n

g m n (x) 5 h m n 1 h m n (x) (4)

with signature ( 2 , 1 , ? ? ? , 1 ) for the Minkowski metric. Using this metric
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and neglecting the surface terms that appear in an integration by parts, we

can write the action for the scalar field as

Sm[ f , h m n ] 5
1

2 # d nx f [N 1 V (1) 1 V (2) 1 ? ? ? ] f (5)

where the first- and second-order perturbative operators V (1) and V (2) are
given by

V (1) [ 2 {[ - m hÅ m n (x)] - n 1 hÅ m n (x) - m - n 1 j R(1)(x)}

V (2) [ H [ - m hÃm n (x)] - n 1 hÃm n (x) - m - n 2 j 1 R(2)(x) 1
1

2
h(x)R(1)(x) 2 J (6)

In the above expressions, R(k) is the k-order term in the pertubation h m n (x) of

the scalar curvature and the definitions hÅ m n and hÃm n denote a linear and a
quadratic combination of the perturbation, respectively,

hÅ m n [ h m n 2
1

2
h h m n

hÃm n [ h a
m h a n 2

1

2
hh m n 1

1

8
h2 h m n 2

1

4
h a b h a b h m n (7)

For the gravitational field we take the following action:

Sdiv
g [g m n ] 5

1

ln 2 2
P # d nx ! 2 gR(x)

1
a m Å n 2 4

4(n 2 4) # d nx ! 2 g

3 F 3R m n a b (x) R m n a b (x) 2 1 1 2 360 1 j 2
1

6 2 2 2 R(x)R(x) G (8)

The first term is the classical Einstein±Hilbert action and the second divergent

term in four dimensions is the counterterm used in order to renormalize the

effective action. In this action l2
P 5 16 p G, a 5 (2880 p 2) 2 1, and m Å is an

arbitrary mass scale. It is noteworthy that the counterterms are independent

of the temperature because the thermal contribution to the effective action
is finite and does not include additional divergences.

2.2. CTP Effective Action

The CTP effective action at finite temperature for a free quantum scalar

field in a gravitational background is given by
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G b
CTP[h 6

m n ] 5 Sdiv
g [h 1

m n ] 2 Sdiv
g [h 2

m n ] 2
i

2
Tr{ln GÅ b

ab[h 6
m n ]} (9)

where a, b 5 6 denote the forward and backward time paths and GÅ b
ab[h 6

m n ]

is the complete 2 3 2 matrix propagator with thermal boundary conditions

for the differential operator N 1 V (1) 1 V (2) 1 ? ? ? . Although the actual form
of GÅ b

ab cannot be explicitly given, it is easy to obtain a perturbative expansion

in terms of V (k)
ab , the k-order matrix version of the complete differential operator

defined by V (k)
6 6 [ 6 V (k)

6 and V (k)
6 7 [ 0, and G b

ab, the thermal matrix propaga-

tor for a massless scalar field in flat spacetime [8]. To second order GÅ b
ab reads

GÅ b
ab 5 G b

ab 2 G b
acV

(1)
cd G b

db 2 G b
acV

(2)
cd G b

db 1 G b
acV

(1)
cd G b

deV
(1)
ef G b

fb 1 ? ? ? (10)

Expanding the logarithm and dropping one term independent of the

perturbation h 6
m n (x), we can write the CTP effective action perturbatively as

G b
CTP[h 6

m n ]

5 Sdiv
g [h 1

m n ] 2 Sdiv
g [h 2

m n ]

1
i

2
Tr[V (1)

1 G b
1 1 2 V (1)

2 G b
2 2 1 V (2)

1 G b
1 1 2 V (2)

2 G b
2 2 ]

2
i

4
Tr[V (1)

1 G b
1 1 V (1)

1 G b
1 1 1 V (1)

2 G b
2 2 V (1)

2 G b
2 2

2 2V (1)
1 G b

1 2 V (1)
2 G b

2 1 ] (11)

In computing the traces, some terms containing divergences are canceled

using counterterms introduced in the classical gravitational action after dimen-

sional regularization. In general, the nonlocal pieces are of the form

Tr[V (1)
a G b

mnV
(1)
b G b

rs]. In terms of the Fourier transformed thermal propagators
GÄ bab(k) these traces can be written as

Tr[V (1)
a G b

mnV
(1)
b G b

rs]

5 # d nx d nx8 ha
m n (x)hb

a b (x8)

3 # d nk

(2 p )n

d nq

(2 p )n eik ? (x 2 x8)GÄ bmn(k 1 q)GÄ brs(q)T m n , a b (q, k) (12)

where the tensor T m n , a b (q, k) is defined in ref. 8 after an expansion in terms

of a basis of 14 tensors [22]. In particular, the last trace of (11) may be split

into two different kernels N m n , a b (x 2 x8) and D m n , a b (x 2 x8),
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i

2
Tr[V (1)

1 G b
1 2 V (1)

2 G b
2 1 ]

5 2 # d 4x d 4x8 h 1
m n (x)h 2

a b (x8)[D m n , a b (x 2 x8) 1 iN m n ,, a b (x 2 x8)] (13)

One can express the Fourier transforms of these kernels, respectively, as

NÄ m n , a b (k) 5 p 2 # d 4q

(2 p )4 { u (ko 1 qo) u ( 2 qo)

1 u ( 2 ko 2 qo) u (qo) 1 n b ( | qo | ) 1 n b ( | ko 1 qo | )

1 2n b ( | qo | )n b ( | ko 1 qo | )} d (q2) d [(k 1 q)2]T m n , a b (q, k) (14)

DÄ m n , a b (k) 5 2 i p 2 # d 4q

(2 p )4 { u (ko 1 qo) u ( 2 qo)

2 u ( 2 ko 2 qo) u (qo) 1 sg(ko 1 qo)n b ( | qo | )

2 sg(qo)n b ( | ko 1 qo | )} d (q2) d [(k 1 q)2]T m n , a b (q, k) (15)

Using the property T m n , a b (q, k) 5 T m n , a b ( 2 q, 2 k), it is easy to see that

N m n , a b (x 2 x8) is symmetric and D m n , a b (x 2 x8) antisymmetric in their argu-
ments; that is, N m n , a b (x) 5 N m n , a b ( 2 x) and D m n , a b (x) 5 2 D m n , a b ( 2 x).

To identify properly the physical meanings of these kernels we have to

write the renormalized CTP effective action at finite temperature (11) in an

influence functional form [4]. Here N, the imaginary part of the CTP effective

action, can be identified with the noise kernel and D, the antisymmetric piece
of the real part, with the dissipation kernel. In Section 3 we will see that

these kernels thus identified indeed satisfy a thermal FDR.

If we denote the difference and the sum of the perturbations h 6
m n defined

along each branch C 6 of the complex time path of integration C by [h m n ] [
h 1

m n 2 h 2
m n and {h m n } [ h 1

m n 1 h 2
m n , respectively, we can write the influence

functional form of the thermal CTP effective action to second order in h m n as

G b
CTP[h 6

m n ] .
1

2l2P # d 4x d 4x8[h m n ](x) L m n , a b
(o) (x 2 x8){h a b }(x8)

1
1

2 # d 4x [h m n ](x) T m n
( b )

1
1

2 # d 4x d 4x8 [h m n ](x) H m n , a b (x 2 x8){h a b }(x8)

2
1

2 # d 4x d 4x8 [h m n ](x) D m n , a b (x 2 x8){h a b }(x8)
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1
i

2 # d 4x d 4x8 [h m n ](x) N m n , a b (x 2 x8)[h a b ](x8) (16)

The first line is the Einstein±Hilbert action to second order in the perturbation

h 6
m n (x). Here L m n , a b

(o) (x) is a symmetric kernel [i.e., L m n , a b
(o) (x) 5 L m n , a b

(o) ( 2 x)] and

its Fourier transform is given by

LÄ m n , a b
(o) (k) 5

1

4
[ 2 k2T m n , a b

1 (q, k) 1 2k2T m n , a b
4 (q, k)

1 T m n , a b
8 (q, k) 2 2T m n , a b

13 (q, k)] (17)

The 14 elements of the tensor basis T m n , a b
i (q, k) (i 5 1, . . . , 14) are defined

in ref. 22. In the second line T m n
( b ) has the form of a perfect fluid stress-

energy tensor

T m n
( b ) 5

p 2

30 b 2 F u m u n 1
1

3
( h m n 1 u m u n ) G (18)

where u m is the four-velocity of the plasma and the factor p 2/30 b 4 is the

familiar thermal energy density for massless scalar particles at temperature

b 2 1. In the third line, the Fourier transform of the symmetric kernel H m n , a b (x)
can be expressed as

HÄ m n , a b (k) 5 2
a k4

4 H 1

2
ln

| k2 |
m 2 Q m n , a b (k) 1

1

3
QÅ m n , a b (k) J

1
p 2

180 b 4 { 2 T m n , a b
1 (u, k) 2 2T m n , a b

2 (u, k)

1 T m n , a b
4 (u, k) 1 2T m n , a b

5 (u, k)}

1
j

96 b 2 {k2T m n , a b
1 (u, k) 2 2k2T m n , a b

4 (u, k)

2 T m n , a b
8 (u, k) 1 2T m n , a b

13 (u, k)}

1 p # d 4q

(2 p )4 H d (q2)n b ( | qo | )3 F 1

(k 1 q)2 G
1 d [(k 1 q)2]n b ( | ko 1 qo | )3 F 1

q2 G J T m n , a b (q, k) (19)

where m is a simple redefinition of the renormalization parameter m Å given

by m [ m Å exp(23/15 1 1±2 ln 4 p 2 1±2 g ), and the tensors Q m n , a b (k) and QÅ m n , a b (k)

are defined, respectively, by
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Q m n , a b (k) 5
3

2 H T m n , a b
1 (q, k) 2

1

k2 T m n , a b
8 (q, k) 1

2

k4 T m n , a b
12 (q, k) J

2 F 1 2 360 1 j 2
1

6 2
2 G

3 H T m n , a b
4 (q, k) 1

1

k4 T m n , a b
12 (q, k) 2

1

k2 T m n , a b
13 (q, k) J (20)

QÅ m n , a b (k) 5 F 1 1 576 1 j 2
1

6 2
2

2 60 1 j 2
1

6 2 ( l 2 36 j 8) G
3 H T m n , a b

4 (q, k) 1
1

k4 T m n , a b
12 (q, k) 2

1

k2 T m n , a b
13 (q, k) J (21)

In the above equation j 8 means the derivative of j (n) with respect to n
evaluated at n 5 4. HÄ m n , a b (k) is the complete contribution of a free massless

quantum scalar field to the thermal graviton polarization tensor [22, 23] and it

is responsible for the instabilities found in flat spacetime at finite temperature

[21±23]. Equation (19) reflects the fact that the kernel HÄ m n , a b (k) has thermal
as well as nonthermal contributions. Note that it reduces to the first term in

the zero-temperature limit ( b ® ` )

HÄ m n , a b (k) . 2
a k4

4 H 1

2
ln

| k2 |
m 2 Q m n , a b (k) 1

1

3
QÅ m n , a b (k) J (22)

and at high temperatures the leading term ( b 2 4) may be written as

HÄ m n , a b (k) . p 2

30 b 4 o
14

i 5 1

H i (r)T
m n , a b
i (u, K ) (23)

where we have introduced the dimensionless external momentum K m [
k m / |

-
k | [ (r, kÃ). The Hi (r) coefficients were first given in ref. 22 and general-

ized to the next to leading order ( b 2 2) in ref. 23. (They are given with the

MTW sign convention in ref. 8.)3

Finally, as defined above, N m n , a b (x) is the noise kernel representing the

random fluctuations of the thermal radiance and D m n , a b (x) is the dissipation

kernel, describing the dissipation of energy of the gravitational field.

3 Note that to leading order, the addition of the contribution of other kinds of matter fields to
the effective action, even graviton contributions, does not change the tensor structure of this
kernel and only the overall factors are different [22].
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3. FLUCTUATION-DISSIPATION RELATION AND LINEAR
RESPONSE THEORY

3.1. Fluctuation-Dissipation Relation

These two kernels found above are functionally related by a fluctuation-
dissipation relation (FDR). This relation reflects the balance between the

quantum fluctuations in the thermal radiance and the energy loss by the

gravitational field. In ref. 8 we have shown explicitly how this relation appears

at zero temperature and at high temperature. Here, using the properties of

the thermal propagators, we show that the FDR is formally satisfied for

all temperatures.
We begin by showing that the FDR naively appears at the level of

propagators as a direct consequence of the KMS relation [29]. Then, using

a generalization of this KMS relation, we see how the FDR is also satisfied

by our noise and dissipation kernels.

To obtain the FDR at the level of propagators we need to introduce the

Schwinger and the Hadamard propagators. These propagators are defined as
the thermal average of the anticommutator G(x 2 x8) [ 2 i ^ [ f (x), f (x8)] & b

and the commutator G(1)
b (x 2 x8) [ 2 i ^ { f (x), f (x8)} & b , respectively. The first

represents the linear response of a relativistic system to an external perturba-

tion and the second the random fluctuations of the system itself [29, 5]. Since

we can write the KMS condition satisfied by the propagators G b
1 2 and

G b
2 1 in Fourier space as

GÄ b 2 1 (k) 5 e b ko
GÄ b 1 2 (k) (24)

the Fourier transform of both the Schwinger GÄ (k) and the Hadamard

GÄ (1)
b (k) propagators can be expressed, for example, in terms of GÄ b1 2 (k) alone

GÄ (k) [ GÄ b 2 1 (k) 2 GÄ b 1 2 (k) 5 (e b ko
2 1) GÄ b

1 2 (k)

GÄ (1)
b (k) [ GÄ b 2 1 (k) 1 GÄ b1 2 (k) 5 (e b ko

1 1) GÄ b 1 2 (k) (25)

The FDR satisfied by these propagators follows inmediately from the above

equalities [29, 5]:

GÄ (1)
b (k) 5 coth 1 b ko

2 2 GÄ (k) (26)

Obviously, this relation can also be recovered if we write the explicit expres-

sions for the Fourier transform of the propagators

GÄ (k) 5 2 2 p i sg(ko) d (k2)

GÄ (1)
b (k) 5 2 2 p i coth 1 b | ko |

2 2 d (k2) (27)
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To use this last approach in our case could be a very difficult task because

one needs to compute the integrals for the noise and dissipation kernels

explicitly. On the other hand, if we follow the first technique, we only need
to generalize the KMS condition of Eq. (24) to the product of two propagators.

This generalization reads

GÄ b 2 1 (k 1 q)GÄ b 1 2 (q) 5 e b ko
GÄ b1 2 (k 1 q)GÄ b 2 1 (q) (28)

and can be used to deduce the following formal identity:

GÄ b 2 1 (k 1 q)GÄ b1 2 (q) 1 GÄ b 1 2 (k 1 q)GÄ b 2 1 (q)

5 coth 1 b ko

2 2 [GÄ b 2 1 (k 1 q) GÄ b1 2 (q) 2 GÄ b
1 2 (k 1 q)GÄ b 2 1 (q)] (29)

Finally, one only needs to write, from the trace of Eq. (12) and the

definitions (14) and (15), the noise and dissipation kernels in terms of the

propagators GÄ b6 7 , respectively, as

NÄ m n , a b (k) 5 2
1

4 # d 4q

(2 p )4 [GÄ b 2 1 (k 1 q)GÄ b1 2 (q)

1 GÄ b 1 2 (k 1 q) GÄ b 2 1 (q)]T m n , a b (q, k) (30)

DÄ m n , a b (k) 5
i

4 # d 4q

(2 p )4 [GÄ b
2 1 (k 1 q)GÄ b 1 2 (q)

2 GÄ b 1 2 (k 1 q)GÄ b 2 1 (q)] T m n , a b (q, k) (31)

and use the formal equality (29) to prove that they are related by the ther-

mal identity

NÄ m n , a b (k) 5 i coth 1 b ko

2 2 DÄ m n , a b (k) (32)

In coordinate space we have the analogous expression

N m n , a b (x) 5 # d 4x8 KFD(x 2 x8)D m n , a b (x8) (33)

where the fluctuation-dissipation kernel KFD(x 2 x8) is given by the integral

KFD(x 2 x8) 5 i # d 4k

(2 p )4 eik ? (x 2 x8) coth 1 b ko

2 2 (34)

The proof of this FDR at finite temperature is in some sense formal because

we have assumed along the argument that the integrals are always well
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defined. Nevertheless, the exact results obtained for the zero- and high-

temperature limits [8] indicate that the noise and dissipation kernels are well-

defined distributions [30]. The asymptotic analysis has also been useful to
determine the physical origin of the fluctuations.

3.2. Linear Response Theory

A fluctuation-dissipation relation is usually derived using linear response
theory (LRT). We now show the connection between the LRT [20] and the

functional methods we have used here. In the spirit of LRT the gravitational

field is considered as a weak external source which imparts disturbances to

the radiance whose response is studied to linear order.

Let us first recall the main features of LRT. Consider a system described

by the Hamiltonian operator HÃ
o initially coupled linearly to an external driving

agent, say A a . Since we are only interested in how the system responds to

the external agent, and not the details of the agent, we will ignore the

Hamiltonian for the external perturbation, but write the complete operator

Hamiltonian of the sytem as

HÃ5 HÃo 1 A a JÃa (35)

where J a is the current operator associated with the external agent. If the

system is in thermal equilibrium before the external source is applied, the
first-order response of the system to this external force is given by the

thermal expectation value of the commutator of the current operator over its

thermal average

^ [J m (x) 2 ^ J m (x) & b , J n (x8) 2 ^ J n (x8) & b ] & b (36)

In contrast, the intrinsic quantum fluctuations of the system are described by

the thermal average of the anticommutator. In our case, the conserved current

operator is given by the stress-energy tensor T m n (x) as derived from the

classical action. Our objective is to show that the response and fluctuation
functions for the stress-energy tensor considered in the LRT are equivalent

to the dissipation and noise kernels, respectively.

First, we write the classical action for the matter field to linear order in

the gravitational perturbations,

Sm[ f , h m n ] . 1

2 # d 4x [ f M f 1 h m n T
m n ] (37)

with the stress-energy tensor given by

T m n 5 P m n , a b - a f - b f 1 j ( h m n M 2 - m - n ) f 2 (38)

Note that T m n (x) is conserved if the classical unperturbed equation of motion
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for f is satisfied and it reduces to the stress-energy tensor for a scalar field

in flat spacetime if j 5 0. Alternatively, we can write the Hamiltonian

formulation of our problem. If we introduce the conjugate momentum variable
of the matter field to first order in the perturbation

P [
- +

- f Ç
, f Ç 1

1

2
h m n

- T m n

- f Ç
(39)

we can write the Hamiltonian as

H . 1

2 # d 3 -
x F P 2 1 (

-
¹ f )2 2 h m n T

m n G (40)

Note that to first order f Ç and P are interchangeable in the expression for
the stress-energy tensor.

Using the thermal version of the Wick theorem [31, 32], one can write,

after some algebra, the equilibrium thermal average of the two-point function

for the stress-energy tensor operator at different spacetime points in terms

of products of thermal propagators,

^ T m n (x), T a b (x8) & b 2 ^ T m n (x) & b ^ T a b (x8) & b

5 2 2 # d 4k

(2 p )4 eik? (x 2 x8) # d 4q

(2 p )4 GÄ b
2 1 (k 1 q)GÄ b1 2 (q)T m n , a b (q, k) (41)

Finally, defining D b T m n (x) [ T m n (x) 2 ^ T m n (x) & b and using the expressions

for the noise and dissipation kernels given in (30) and (31), respectively,

we obtain

^ { D b T m n (x), D b T a b (x8)} & b 5 8N m n , a b (x 2 x8) (42)

^ [ D b T m n (x), D b T a b (x8)] & b 5 8iD m n , a b (x 2 x8) (43)

From these formal identities we conclude that the functional method gives

a description of the lowest order dynamics of a near-equilibrium system
equivalent to that given traditionally by the LRT.

4. EINSTEIN ± LANGEVIN EQUATION

To reinforce the points made at the beginning about the dynamic nature

of the backreaction of thermal radiance on the black hole spacetime even for
the quasistatic case, we now derive from the thermal CTP effective action a

dynamical equation governing the dissipative evolution of the gravitational

field under the influence of the fluctuations of the thermal radiance. It is in

the form of an Einstein±Langevin equation [2].
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We first introduce the influence functional [4] ^ [ exp(iSIF ), where

the influence action SIF is related to the CTP effective action in the semiclassi-

cal limit by [2]

^ 5 exp i 1 Re{ G b
CTP[h 6

m n ]}

1
i

2 # d 4x d 4x8 [h m n ](x)N m n , a b (x 2 x8)[h a b ](x8) 2 (44)

where Re{ ? } denotes taking the real part. Following ref. 4, we can interpret

the real part of the influence functional as the characteristic functional of a

nondynamical stochastic variable j m n (x),

F ([h m n ]) 5 exp 1 2
1

2 # d 4x d 4x8 [h m n ](x)N m n , a b (x 2 x8)[h a b ](x8) 2 (45)

This classical stochastic field represents probabilistically the quantum fluctua-

tions of the matter field and is responsible for the dissipation of the gravita-

tional field. By definition, the above characteristic functional is the functional

Fourier transform of the probability distribution functional 3[ j m n ] with respect

to j m n ,

F ([h m n ]) 5 # $j m n 3[ j m n ] exp F i # d 4x [h m n ](x)j m n (x) G (46)

Using (45), one can easily see that the probability distribution functional is

related to the noise kernel by the formal expression

3[ j m n ]

5
exp( 2 1±2 * d 4x d 4x8 j m n (x)[N m n , a b (x 2 x8)] 2 1j a b (x8))

* $j m n exp( 2 1±2 * d 4x d 4x8 j m n (x)[N m n , a b (x 2 x8)] 2 1j a b (x8))
(47)

For an arbitrary functional of the stochastic field %[ j m n ], the average value

with respect to the previous probability distribution functional is defined as
the functional integral ^ %[ j m n ] & j [ * $[ j m n ] 3[ j m n ]%[ j m n ]. In terms of this

stochastic average the influence functional can be written as ^ 5
^ exp(i G st

CTP[h 6
m n ]) & j, where G st

CTP[h 6
m n ] is the modified effective action

G st
CTP[h 6

m n ] [ Re{ G b
CTP[h 6

m n ]} 1 # d 4x [h m n ](x)j m n (x) (48)

Clearly, because of the quadratic nature of the characteristic functional (45)

and its relation to the probability distribution functional (46), the field j m n (x)
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is a zero-mean Gaussian stochastic variable. This means that its two-point

correlation function, which is given in terms of the noise kernel by

^ j m n (x)j a b (x8) & j 5 N m n , a b (x 2 x8) (49)

completely characterizes the stochastic process. The Einstein±Langevin equa-

tion follows from taking the functional derivative of the stochastic effective

action (48) with respect to [h m n ](x) and imposing [h m n ](x) 5 0. In our case,

this leads to

1

l2P # d4x8 L m n , a b
(o) (x 2 x8)h a b (x8)

1
1

2
T m n

( b ) 1 # d 4x8 (H m n , a b (x 2 x8) 2 D m n , a b (x 2 x8))h a b (x8) 1 j m n (x) 5 0

(50)

To obtain a simpler and clearer expression we can rewrite this stochastic

equation for the gravitational perturbation in the harmonic gauge hÅ m n
, n 5 0,

NhÅ m n (x) 1 l2P H T m n
( b ) 1 2P r s , a b # d 4x8 (H m n , a b (x 2 x8)

2 D m n , a b (x 2 x8)) hÅ r s (x8) 1 2j m n (x) J 5 0 (51)

where we have used the definition for hÅ m n (x) written in (7) and the tensor

P r s , a b is given by

P r s , a b 5
1

2
( h r a h s b 1 h r b h s a 2 h r s h a b ) (52)

Note that this differential stochastic equation includes a nonlocal term respon-

sible for the dissipation of the gravitational field and a noise source term which

accounts for the fluctuations in the thermal radiance. They are connected by

a FDR as described in the last section. Note also that this equation in combina-
tion with the correlation for the stochastic variable (49) determine the two-

point correlation for the stochastic metric fluctuations ^ hÅ m n (x)hÅ a b (x8) & j self-

consistently.

5. CONCLUSIONS

In this paper we show how the functional methods can be used effectively

to study the nonequilibrium dynamics of a weak classical gravitational field

in a thermal quantum field. The closed time path (CTP) effective action and
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the influence functional were used to derive the noise and dissipation kernels

of this system. The backreaction of the thermal radiance on the gravitational

field is embodied in a fluctuation-dissipation relation (FDR), which connects
the fluctuations in the thermal radiation and the energy dissipation of the

gravitational field. We prove formally the existence of such a relation for

thermal fields at all temperatures.

We also show the formal equivalence of this method with linear response

theory (LRT) for lowest order perturbation of a near-equilibrium system, and

how the response functions such as the contribution of the quantum scalar
field to the thermal graviton polarization tensor can be derived. An important

quantity not usually obtained in LRT but of equal importance manifest in

the CTP approach is the noise term arising from the quantum and statistical

fluctuations in the thermal field.

Finally, we emphasize that the backreaction is intrinsically a dynamic

process which traditional LRT calculations cannot capture fully. We illustrate
this point by deriving an Einstein±Langevin equation for the nonequilibrium

dynamics of the gravitational field with backreaction from the thermal field.

This method can be applied to quasidynamic [6, 33] or fully dynamic problems

such as black hole collapse [14, 16, 34]. To complete the present problem

of quasistatic black hole backreaction, we need to perform the same calcula-
tion for the full Schwarzschild spacetime. Currently we are working on the

fluctuations of the energy-momentum tensor near the black hole horizon and

the derivation of the noise kernel. Results will be reported in future

publications.
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